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Steady-state cracks in viscoelastic lattice models. Il
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Department of Mathematics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
(Received 29 July 1999

We present the analytic solution of the mode IIl steady-state crack in a square lattice with piecewise linear
springs and Kelvin viscosity. We show how the results simplify in the limit of large width. We relate our
results to a model where the continuum limit is taken only along the crack direction. We present results for
small velocity, and for large viscosity, and discuss the structure of the critical bifurcation for small velocity.
We compute the size of the process zone wherein standard continuum elasticity theory breaks down.

PACS numbg(s): 46.50:+a, 62.20.Mk

I. INTRODUCTION the transverse dimensidwis large, then at distances of order
N the elastic fields are given by the results of standard con-
The problem of the dynamics of cracks has received retinuum fracture theory. On small scales, however, there is a
newed interest recentljl], motivated in large part by new boundary layer where the discreteness of the lattice in the
sets of experiment,3]. These experiments have called into ransverse direction is important. This boundary layer struc-
question some of the predictions of the traditional, con-{Ur€ is all important in determining the velocity versus driv-
tinuum mechanics approach to fracture dynamics. The most'9 relation. However, as ouxcontinuum model demon-
striking experimental finding is that cracks exhibit a branch—Strat?d' the d|§cret§:ness in the direction of Fhe C”.iCk is less
ing instability long before they reach the predicted limiting crucial, and primarily affects the small veIocn_y regime.
speed of advance. This instability causes increased dissipg- In the current paper, we study the laryelimit of the
tion and sets an effective limit on the speed of crack propa'E eory. We do this first fOF OUR-continuum model, wher_e
gation. There are hints of such an instability in the Con_the structure of the theory is simpler. We then extend this to
tinuum approach{4], but a systematic treatment remains tht_a full lattice mo_del. In both cases, we present a formal
elusive[5]. Wiener-Hopf solution of the model for arbitraly, and then

One avenue of exploration that has proven fruitful is thetake the largeN limit. This is in contrast to the work of

lattice models of fracture pioneered by Slepy#7] and Slep_ya}n_, who,_ fo_rthe case of infin_ite_simal dissipation, solves
further developed by Marder and collaboratp®s9]. These the |nf|n|_teN I|m|t directly. The pr_lnC|paI advantage of our
models, especially in the extreme brittle limit, are simplem‘?th‘)d is that it allows adlscu§S|0n of the case of large, but
enough to allow comprehensive study, both analytically andinite, N. It also allows a comparison between thfa small-scale
by numerical simulation. The lattice models exhibit someand the Iarge-sca!e structure, Wher.eas Slep_yans method only
novel effects not seen in the continuum description. ForeProduces a solution for small to intermediate scales. Thus
most is the existence of arrested cracks. The lattice modef3/€PYan must rely on an implicit matching to large scales via
also show instabilities at large velocities that may be relevani€ Stress-intensity factor, as opposed to the explicit match-
to the experimentally seen branching instabilities. Thus, it idN9 contained in our solution. The Slepyan method, never-
useful to understand the lattice models in as much detail a$1€1€ss, by avoiding the necessity of solving the fiite-
possible. problem, is more easily app!lgd to other cases, such as the
In a previous papef10], we embarked on a study of the modg—l problem, where the finifd-solution is not so easily
effect of dissipation, in the form of a Kelvin viscosifg1],  °btained. , .
on the behavior of steady-state cracks. Kelvin viscosity, 1h€ plan of the paper is as follows. In Sec. II, we describe
which amounts to putting damped springs between latticdhe lattice model and the simplercontinuum version. In
points, has the physically desirable property that its effects€C: Il we lay out our major results. The details of the
vanish at large wavelengths. We solved numerically for thé:alculatlop are contalnedl in the following sections, first .for
dependence of velocity as a function of the driving displace{h®Xx-continuum problem in Sec. IV, and then for the lattice
mentA. We found that the dissipation acts to lower the ve-Problem in Sec. V. The small velocity limit is studied in
locity and significantly reduces the size of the lattice-induced®€ction VI and the large viscosity limit in Sec. VII. In Sec.
small velocity unstable regime where the velocity is a de-Y!!l: We compare the case of Kelvin viscosity to that of the
creasing function of the driving. We also showed that in thePther frequently studied model for introducing dissipation,
presence of dissipation, the stable regime is well approxit@mely, Stokes viscosity. Stokes viscosity, in the lattice lan-
mated by a-continuum model, wherein the lattice structure 9U9€, is equivalent to having each mass point sit in a vis-
perpendicular to the crack is retained but along the crack i§°US medium, and its effects do not vanish at large wave-
replaced by a naive continuum limit. We also showed that ifengths. We conclude with some observations in Sec. IX.

Il. DESCRIPTION OF THE MODELS

*Present address: Department of Physics, Bar-llan University, Ra- The lattice model we study is identical to that described in
mat Gan, Israel. our earlier work[10]. We have a square lattice of mass
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points undergoingscalay displacement out of the plane. The The steady-state equation then reads
lattice extends infinitely long in th& direction, withN+1

rows in they direction. The lattice points are connected by Ui (1) — 0(t)
linear “springs,” with spring constant 1, to their nearest J
neighbors. The top row is displaced a fixed amodntThe

d

bottom row is connected to a fixed line, with piecewise linear — 0=l 1+ n—| M. (K)uo (1

springs. These springs, with spring constaritcrack” irre- (= 7t M (KU (1)

versibly if they are stretched an amountWhenk=2, this d

model is equivalent to a system ofN2-2 rows, loaded by — 1+ == |[ui(t+ 1) —2u:(t) + Ui (t—1/v)]
. . . dt J ] J

+A from top and bottom, with a symmetric crack running

down the middle, with extension at cracking of the springs -0 )
that bridge the middle beinge2 All the (uncracked springs '

have a viscous damping. The equation of motion for the We will also consider in this paper ancontinuum ver-
system is then sion of this model, where we replace the nonlocal in time
coupling along the crack with its continuum analog

ui,j:

d
1+ ﬁa)(uwl,j_"ui1,j+ui,j+l+ui,jl_4ui,j) ) d
n uj(t)—ﬁ(t)(l-i— na)Mj,j,(O)uj,(t)

for j#1 with u; y+1=A, and
—60(—1)

d
ui,1:(1+ Wa)(ui+l,j+ui—l,j+ui,2_3ui,j)_k0(6_ui,l)

1 d\ 1.
+77& ;Uj(t)
X

d
1+ na)uivl. (2)

Note that in these units, the elastic wave speed is unity, so all
velocities are dimensionless, expressed as fractions of the Ill. SURVEY OF RESULTS
wave speed.

Before proceeding, let us briefly indicate how this model I this section, we survey the major results derived in the
is related to others studied in the literature. This model isbulk of the paper. As the derivations are exceedingly techni-
except for the dissipation mechanism, identical to that studcal, it is useful to present the results first by themselves so
ied in the infiniteN limit by Slepyan[6] and by Marder and that they may be appreciated without getting lost in a welter
collaboratorg8,9] for finite N. Slepyan looked at the case of Of technical complications.
vanishingly small dissipation, and Marder treated the case of We begin by completing the Wiener-HofVH) solution
both finite and zero Stokes viscosity. Astraand Timonen of the continuous, discretey model, as the results are sim-
[12] also performed simulations on such a system withpler and are a useful basis for assimilating the more compli-
Stokes viscosity. Plat al. [13] studied via simulation the cated results of the full lattice model. The key aspect of the
case of Kelvin viscosity using the same piecewise-lineasolution is the calculation oA as a function of the crack
damped spring model for a mode | crack in a triangular lat-velocity v (in units where the wave speed is unityve find
tice. A

We are interested in steady-state cracks, described by the = \/MH Qim(1+ 70 Q1 m) )

G m

Slepyan traveling wave ansatz Qim(1+ 7vdym)’
ui j(t)=uj(t—ilv), (3 which expressed (normalized to the Griffith value,
which implies that every mass point in a given row under- Ag=eV2N+1, (8)

goes the same time history, translated in time. We choose the

origin at time such thati;(0)= € so that it represents the at which the uncracked state becomes metastabterms of

moment of cracking of the spring attached to the bottom rowthe wave vectors corresponding to the various normal modes

mass point. The equation of motion is best expressed iof the problem. If we label the normal mode eigenvalues of

terms of theN X N coupling matrix the y-coupling matrix on the uncracked sidet(k) by A,

- then Q, , is the unique positive root of the phonon disper-
—(m+1) 1 sion relation

1 -2 1 3 22 _

Q%+ (1-v9)Q°+(1+ nQ)A,,=0. (9)

Mpy(m)= .- : Similarly, g, , is the unique positive root of the phonon dis-
' persion relation using the normal mode eigenvalyeof the
1 -2 1 cracked sideM(0).
1 -2 This formula is fairly complicated, but simplifies tremen-
i “(4)  dously for the case of symmetric cracks<(2) in the mac-
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roscopic limit N>1. Then, the product above can be per-
formed analytically, with the simple result

[2[1+ 7vQ4(1)]
_2\—1/4
(1-v9) —Ql(l) ,

where Q4(1) is the mode associated with the highest fre-
guencyy-mode, with A=—4. For typical »'s of order 1,
Q1(1) does not vary much from its zero velocity value of 2.
The resulting curvé\(v)/Ag starts linearly ab =0 from 1
with slope » and diverges ab=1. Thus, in the infiniteN

Ag (10

limit, the velocity never exceeds the wave speed. At any

finite N, however, the velocity crosses the wave speedt a
of orderNY®A 5 . It must cros =1 since the velocity in fact
must diverge whed = A, [10], when bonds are broken in
the uniformly stressed state. For infinitg this is impossible
to achieve since\;/Ag~O(N¥?)—x. The crossing ob
=1, while it also does not occur at infinit¢, is surprisingly
easy to achieve at finitd, since the divergence of the cross-
ing A with N is so weak. This is especially true for small
dissipation, where the critical scales as ¢N)*®. This ap-
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FIG. 1. v vs A/A¢ in the x-continuum approximation, E¢11),
and in the exact lattice model, together with the lattice result trun-
cated after then=0 term,|n|=1 and|n|=5 terms.

pears a more likely mechanism for explaining the experi-multiplicative correction factor involving the complex lattice
mental observation of supersonic cracks than the timemodes. To understand the usefulness of this way of thinking,

dependent forcing hypothesis of Slepydd].
The basic structure is unchanged when we go over to th

as well as its limitations, we present in Fig. 1, fer= 0.5, the
exact numerically computed relationship E43), along with

full lattice model. The essential difference is that the latticethe x-continuum result Eqc11). In addition, we plot the lat-

phonon dispersion relation is nonpolynomial and has an in
finite number of positivéreal-par} solutions for each eigen-
modem. The A —v relationship is

A
7= VkN+ 1]
G

n,m

Q1,n,m(1+ nv Ql,n,m)

Ql,n,m(1+ 77Uq1,n,m) ’ (D

tice result, truncated after its=0, |[n|=1, and|n|=5 terms.

We see that at larger velocities all these results are close,
indicating that the lattice-induced shift i as well as the
additional lattice modes play little role at these velocities. At
smaller velocities, the various approximations differ signifi-
cantly from each other and from the exact curve. We see, in
fact, that as» approaches 0, more and more terms must be

where now the product extends over all positive rea|-parinC|Uded in the prOdUCt to achieve an accurate result. The

roots Q, , m Of the lattice phonon dispersion relation
0=(1+ muQ)[4 sint(Q/2) + A ] —v2Q? (12

for eachA, (A, in the case ofy;, ,,). For a givenm, there
is one real positive rooQ; om (d1,0m), and an infinite series

calculation of the limiting behavior at small velocities re-

quires summing all the terms. The result of the calculation is
that for all », asv—0, A approached|y+=+/1+ ;?ZAG,

the maximalA for which an arrested crack exists. This gen-

eralizes the result of Slepyan for infinitesimal dissipation. As
v increasesA decreases linearly with the—independent

of complex-conjugate pairs of complex roots, ordered by insjope, — A|,:/2 so that the bifurcation from the arrested is

creasing imaginary part. For large the imaginary part in-
creases by roughly 2 for each successive root.

subcritical and universal. This “backward” dependence,
with v increasing withdecreasingdriving A, arising from

Again, for symmetric cracks we can evaluate analyticallythe subcritical nature of the bifurcation, impligd] the insta-

the macroscopi¢largeN) limit. We obtain

\ Q-0
}1/2

Ac

qO,n(1+ nv q@,n)

_— 13
n#0 Ooo n(1+ 7v00p) a3

whereq..  is the root corresponding to the highest frequency

A=—4 eigenmode and plays the role @f (1) of the pre-
vious x-continuum result. Theg,, are the roots correspond-

bility of the solutions in this smalb regime.

More progress can be made in the largdéimit. Here, at
fixed A, the velocity goes to zero agincreases, so that the
ratio ¢= nu is fixed. In this limit, we can calculate the infi-

1

A

12
Ag '

+12

(14)

ing to theA =0 eigenmode. These do not have a counterparThis infinite-y result, together with the exact result for vari-

in the x-continuum calculation as the=0 real solution van-
ishes, and only the lattice-induced: 0 modes enter.

ous 7's, is presented in Fig. 2.
We see that this calculation does not reproduce the sub-

As indicated by the way we expressed this result, we cauwritical bifurcation from the arrested crack at small veloci-

consider it as essentially thecontinuum result, Eq(11),
with the real latticeq.. o replacing Q,(1), modified by a

ties, which is a higher order effect. We can evaluate this 1/
correction near the bifurcation at small and find
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5 ‘ ‘ 7 introduced there, so that the current exposition is minimally

infinite // self-contained.

4} n=16 / ] After decomposing the Fourier transform(K), of the
bottom row displacement field into piecas;, analytic in
the upper and lower half-planes, respectively, we obtained

8 the following equation[see Eq.(42) in [10]]:

=
2 |
~ K+i K+i
0=T+ ( _Q2,m)( _Q3,m) —A6(K)H d2mam
1t m (K+|Q2,m)(K+|Q3,m) m QZ,sz,m
. [T (K=ixap(K+ixa)(K+ixay)
1 +iku,(0)
LT (K=iam) (K+1Qqm) (K+iQsm)
FIG. 2. nv vs A/Ag for n=2,4,8,16 along with the asymptotic
result for largen, Eq. (14). K—i
4 ]__[ Q 1m . (16)
) m K_lch,m
A
A~Algs| 1+—-e ¢ (1—3), (15
Alg- 27

Here,u,(0)=¢€ is the displacement of the bottom row tat
d =0, the moment of cracking. Th® (q) are zeros of the

hich th | behavi i . . :
which reproduces the small behavior described above an _phonon dispersion relation for the uncrackedacked sys-

shows that they dependent corrections are in fact exponen .
e Cep P tem. Formally, letA,,, m=1, ... N denote the eigenvalues

tially small inv. The resultingA —v curve starts af\|y+ at . . - )
y v G -v los of the NX N (uncracked coupling matrixMy(k) defined in

v=0, heads back linearly for a short distance of order ) ) A .
2 Eq. (4) above. Define the polynomial specifying the disper-
1/5(In )%, and then sharply veers forward. sion relation P(x.Q), by

A last result worth noting is that whereas the Kelvin vis-
cosity model analyzed herein has a nice macroscopic limit
when expressed in terms df;, the model with Stokes vis- B 3 PN
cosity, where the dissipation in put in the masses and not in P\ Q=7 Q7+ (1-0v9)Q7+(1+ Q. (17
the bonds, does not have such a limit. Theréda) Stokes
viscosity at the microscopic level changes the continuum

elastic fields and requires an ever-increasiig\ as the  'n€n, P(An,Q) has, for eacim, three roots, one positive
sample is made wider. which we denoteQ, ,, and two with negative real parts,

which we denote by-Q,n, —Qzn, SO that all theQ’s
have positive real parts. Similarlg, , —0zm, —03m are
the roots of P(\,,q), for the eigenvaluesn,, of the
We begin our analysis with the solution of the (cracked coupling matrixMy(0). The x’s are zeros of the
x-continuum model, Eq(6), introduced in Kessler and Le- phonon dispersion relation of the system minus the bottom
vine [10]. It is important to remember that in this model, the row. Thus they are roots oP(/,x), where the/\, are
lattice structure in thg-direction is left unchanged. The so- eigenvalues of the N—1)X(N—1) coupling matrix
lution of the lattice model is similar in structure to that of the My-1(1). They are an artifact of the solution method we
x-continuum model, but the latter is a simpler context inemployed, solving for all the displacements in terms of the
which to develop the necessary techniques. Furthermore, tHottom row displacement only. As we shall see, they in fact
x-continuum model is an interesting approximation in itsplay no role in the final solution, and the whole trick is in
own right, which captures a significant amount of the struc-€liminating them.
ture of the full lattice problem. The problematic term is then
In Kessler, and Levin¢l10], a Wiener—Hopf analysis of
the problem was initiated. In this analysis, the key technique
is to decompose all the terms in the steady-state equation of

IV. x-CONTINUUM MODEL

motion into terms analytic in the upper- and lower-half 1_|[ (K=ix1)(K+ixz)(K+ixs))

planes, respectively. However, the analysis was not carried ik (18
to completion, due to the presence of one term whose de- IT (K=igym) (K+iQum)(K+iQs )
composition was not evident. Here we use a trick to accom- m ’ ’ ’

plish the decomposition of this last remaining term, and

thereby complete the solution of the problem. We choose not

to reproduce the lengthy preliminary stages of this calculaas it involves singularities and poles in both the upper- and
tion, for which the interested reader is referred 10]. We  lower-half planes. To proceed, we rewrite the numerator us-
do, however, reiterate the definition of the relevant notationsng the following manipulations:
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crack region,u;(x)#(x). Looking at the part of Eq(16)

H (K=ixy)(K+ixz)(K+ixs)) analytic in the upper half-plane, we get
1-inpoK\N71 5 Fi +i -
:( i ) dety_[F(K) T+ M(D)] o—ge ] KHidem (K+i83m) 1A rp amllam
I pv m (K+iQam)(K+iQ3m)  K+i0"'m Q2mQ3m
1(1—ipoK\N"?
= E<—) {det [ f(K)Z+ M(0)] o —" |11 1+ 7vQim
i yu 1-inpvK|'m 1+ vy,
—deq[f(K)Z+ M(k)]} (K+idgpm)(K+idam)
. - — ——. (23
1 i . . . m (K+iQom)(K+iQ3zpm)
—dm) 1;[ (K=iq1m) (K+ig2m) (K+i03m)
Solving foru®, we find
~IT (K=iQum)(K+iQam)(K+iQsm) |. (19 . _ _
m TJ+= iA q2,mq3,m(K+|Q2,m)(K+|Q3,m)
The first line of this chain employed an identity frdro0], K+i0" m QzmQam(K+idzm) (K+igsm)
Eq. (40), relating the numerator to the determinant of a cer-
tain matrix formed fromMy_,(1) and the identity matrig —uy(0)— 2
together with the function 1-ipvK
f(K)Z[iﬂvKS—(l—UZ)Kz]/(l—iﬂUK). (20) % H (1+nUQl,m)(K+i-QZ,m)(K—i_-iQS,m)_1 .
m (14 700y m) (K+idzm) (K+idgm)
The second line in this chain, claiming this determinant is (24)
equivalent, up to a constant factor, to the difference of two
NXN determinants can be proven by expanding each of th . . . .
matrices about the first row. The last line reexpresses each gfo urier transforming and evaluating a0 yields
these two determinants using more identities fidl], Egs. e (14 7Qy.)
(38)—(39). . _ . Ul(o):AH M_ul(o) H M—l}
After these manipulations, our term can be written as m Q2mQam m (1+7nvdym)
(25)
LT (K= ixap (Kt (Kt ixa) so that
ik
IT (K=igym)(K+iQum) (K+iQzm) Ao m0am( 1+ 7001 m)
: : : u(0)=A . 26
m 0=allg S
_ nv K=iQqm
T 1-iguK| K—iqm Using u;(0)=¢€, Ag=€eJkN+1 and the relationgsee Eq.

(43) in [10]]
(K+idom) (K+igsm)
m (K+iQom) (K+iQgzm)

. (21)

lr_nI ql,mq2,mq3,m:(77v)7Nr (273)

As the outside factor has a pole at/nv in the lower-
half plane, the second term only has singularities and poles
in the lower-half plane and so is in the desired form. The first IT QumQ2mQam=(kN+1)(5v) 7N, (27b)
term is still mixed and requires further massaging. The idea m
is to subtract out the unique lower-half plane pole so that . )
what is left has only upper-half plane poles and zeros. ThudVe obtain our desired result

1 A Qim(1+7vQ1m)
_ 4 —=JkN+1]] =——T 28
0, K=iQum v o, Ql‘m+ B Ag 1;1[ Qum(1+ 7vaym) 9
=i oK K—iqry 1—izoKom 1 g
%Hh,m The primary benefit of this method of solution over the

22) direct approach employed 0] is that for the symmetric
crack k=2) we can take the largs-limit. To do this, we

We will not need the explicit form ofy~ in the calculation.
What we have is now sufficient to solve fai, the Fourier m,-1] (1+7vQ1m) . 29
transform of the displacement of the bottom masses in the A 1+ U1 m)
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We transform the product into the exponential of a sum over
logarithms, a sum which faX large we can approximate by

STEADY-STATE CRACKS IN VISCOELASTC ... . I

an integral, via the Euler-MacLauren Summation Formula

(EMSP [15]. Thus,

N
Inlef dmlIn(1+ 7 Q) —IN(1+ pvdym)].
0
(30)
Now, for k=2, A,=-—4sirf(zm/2N+1) and \,=

—4 sirf{ m(m—1/2)/2N+1]. If we definea=m/N, then we
see that

1 dQ,

Au(@)=Qila—U2N)=Qu(@) 55 4o+ (3D

The integral is now a total derivative, and so

1 d
InH1~%f da g [In(1+ 70 Q1]
0 o

=2{In[1+ 70 Q1(1)]=IN[1+ 7vQ4(0)]}. (32
Whena=1, m=N, giving A,,~—4, and sdQ,(1) satisfies
0=P[-4,Q;(1)]

=7vQ1(1)°+(1-v3)Q1(1)?—4[1+ mQu(D)]. (33

Similarly, whena approaches 0, so doesand so alsa\,.
This in turn implies thaQ,(0)=0. So, finally,

My ~[1+70Qy(1)]* (34

2353
szngl;[ VA /N
=I15/detM(2)/detM(0)
=M82N+1, (39

so putting all the pieces together yields the simple result

ST CHEV

(39

which expressed in terms ofQ4(1), thewave vector at the
end of the Brillouin zone.

The most striking lesson of this formula is thatdiverges
atv=1, the wave speed. Thus, while at any firitethere is
no upper limit to the velocity, at infinitdl the wave speed is
an absolute upper bound to the crack velocity. At lat\ge
approaches unity from below asAtY. A second lesson is
that at small velocityA ~Ag(1+ nv), so thatA approaches
A¢ linearly, as is generally true for thiscontinuum model.
A third implication is the behavior at large. For fixedA, v
decreases ag gets large, so thaD,(1) satisfies

0~ 7vQ1(1)°+Q1(1)%=4[1+ 7vQ4(1)]

The second factor is slightly more difficult to treat, since Or

the numerator and denominator both vanishnas:0. To

handle this, we regularize the product by multiplying and
dividing by IT,,v A /A ,, Wwhich we can perform analytically.
Then, the regularized producﬁ,g, can be transformed to the

=[1+7vQ1(1)][Q1(1)*—4], (40)
so thatQ,(1)=~2. Substituting this in Eq(39) gives
AA%\/1+2770 (47
G
A 2

exponential of an integral of a total derivative, which can beln this larges limit, of course,A is a function of the scaling

calculated explicitly. In detail,

le\/_hm
ni=]] —/m——, 35
? lr_T‘[ql,m\/_[\m ( )
so that
R__ 1 1d Qi(a)
InH2~f0da§d—alnm
=%{In[Q1(1)/2]—In(1/\/1—vz)}, (36)

where we have used the fact that far small, Q,(«a)

~\J=A(a)/(1-v?). Thus,
5 (Ql(l)\/l—vz)llz
T2 ) -

115 (37)

Also,

variable nv, which was first introduced ipl3].

We have seen how at infinitd, the crack speed never
crosses unity, the wave speed. However, at any fixitbere
is aA for which the crack speed crosses unity, which must
diverge withN. We now calculate how this threshold scales
with N. The key to the calculation i$l,, since it is the
vanishing of I, which leads to the divergence & at v
=1 for N infinite. To compute the value dil, atv=1 for
finite largeN, we need to choose a different regularization.
We now define

HRZ H Ql,m( - )\m)ll3

(43
2 Gy~ AR
so that
A 1/3
=15 [] )\—’“} =(2N+1)*1f. (44)
m m

Now, sinceQ;(a)/[ —A(a)]*® approaches the finite limit
1/7*® asa goes to OJI has a finite limit av =1 asN goes
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to infinity, namely,I18~ \/Q,(1)(»/4)'". Using the infinite  also interesting to note that the relative error vanishes as

N limit of I1; from Eg. (34), we get goes to zero, so that the infinité-approximation becomes
o better at small velocities.
A:mEN(N)M[Z[H ﬂQl(l)]} (45) One last interesting piece of information we can derive
Ag I1, Qq(1) ' from our solution is the size of the “process zone,” the

region where the solution from continuum elastic theory
ical evid di ol h Hici breaks down. The leading-order macroscopic solution was
numerical evidence discussed 0. The coefficient goes to derived in[10], and exhibited the classic square-root singu-

2 for 7 large, and vanishes ag"® for small 7. : o o o
Another manifestation of this same phenomenon, the disl-amy at the crack tipf=0. This singularity is really present

appearance of the=1 crossing in the infinitéN limit, is the only at infinite N, and is cut off by the upper limit on the

nonuniformity of the the larg& limit as v approaches 1. Q's, .(relatlve_to Fhe sr_nallesQ~1/N) at finite N. Math-
Working out the corrections to the EMSF, we find that ematically, this gives rise to a lower-order boundary layer
’ near the crack tip. This was demonstrated graphically in Fig.

8 of [10]. As can be seen in this figure, the inner solution in

Thus, the threshold scales adN®Ag, in accord with the

TNV .
Hl(N)~H1(N=oc)< 1-——s— (46)  the boundary layer relaxes exponentially to the outer con-
8V1-v°N tinuum solution. The size of this boundary layer, or “process
and zone,” as it is called in the engineering literature, is set by
the rate of the exponential decay of the inner solution. We
3 can determine this by studying our exact solutiontfor Eq.

1+

R R(N —
H5(N) =I5 (N=)* - (4D (24), for K’s of order 1. Using the EMSF to evaluate the

16(1— 2 3/2N ey TS ! - !
8(1-v%) infinite product, similar to the derivations above, we find

Thus, the relative error of the infinitd- approximation is
O(1/N), and diverges as approaches 1 as (v) %2 Itis

i iA (Ql(l)\/1—v7[K+in(l)][K+iQ3(1)])1/2
V2N+1(K+i0™) 2[K+iQ2(0)][K+iQ3(0)]
N i€ ([1+ anl(l)][K+in(l)][K+iQ3(1)])1’2} 48
K+ilnv [1+ 70Q1(0)J[K+iQx(0)[[K+iQ3(0)]) [
[
Using Q;(0)=Q,(0)=0, Q3(0)=(1—v?)/nv, and the re- V. LATTICE MODEL

sult for A, Eq. (39), we get In this section, we generalize our solution of the

x-continuum model to the lattice model. For ease of presen-
[14+ 70Q(1)[K+iQx(1)][K+iQ3(1)] v tation, we will present the derivation only in tie=1 case.
K10 Kt i(1—02)/ The case of generdl follows in a straightforward manner
(K+I0T)[K+i(1=0%)/ 0] from this derivation and that of the continuum finikemodel

ut=ie

1 1 i presented in the preceding section.
% —— : + 2 ) (49) Our derivation follows directly along the lines of our WH
K+iot K+ilgu] K+iln treatment of the continuutN=1 problem in[10]. The equa-

tion of motion of the steady-state crack is

Examining this expression for smaifl, we find the ex-
pectedK ~37 singularity, which gives rise to the square-root ..
singularity of the outer solution. The coefficient of ke 2~ U(1)=
singularity to leading order ilN is Ai¥°N~Y41—p?)~ 4
which reproduces the samgindependent coefficient of the
square-root singularity, or equivalently stress-intensity fac-
tor, found in[10]. The size of the process zone is determined
by the singularity nearest the real line, since this gives th . . .
slowest, and therefore dominant, exponential decay of th pon Fourier transforming, we find
inner solution. For smallyn, this singularity is atK=
—iQ,(1)~—2i/\1—v?, so the process zone is truly micro- iK
scopic, unless the velocity is very close to 1. For laggehe 2 1
dominant singularity is &= —i1Q3(1)~ —i/ v, so the pro-
cess zone grows linearly with in size. —k(1—iguK)u~ +AS8(K)—knou(0), (52

1+ n%)[u(w1/v)—3u(t>+U(t—lfv)]—ke(—t)

X

d
1+ ﬂa) u(t). (50

0=(1—invK)|4 sini u+vKZ
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whereu is the Fourier transform af andu® are the trans- 1
forms of 6(=t)u(t). We define the function k1l ” K
o (1—i—) 1—i )
in Q2,n’
R(N;Q)=(1+ nvQ)[4 sintf(Q/2) + ]—v?Q? (52
1 R(-1;-iK)=R(=(1+k); —iK)
in terms of which 11K 11 (1—i£><1—i K
n,n’ Uin QZ,n'
0=R[—(1+k); —iKJU"+R(—1;—iK)u" +A&(K) _ 1K Qun(K=iQu)
1-inpvK~ Ql,n(K_lql,n)
—kznou(0). (53
1 QZ,n’(K'HQZ,n’)

- . (56)
. . . . . . 1_ | nv K 4 ’ K + | ’
This function,R(\; Q), which is the lattice equivalent of the " Gzn( Q2ar)

Egy;?m (Iaa; Fr’oigplgl)fdinlr}at;e ;éeiz?i?lli?g sseicg?r;éi,ose; r:ﬁteAs before, the second term is now fine, but the first term is

' ' ' : still mixed. Again we subtract out the unique pole in the

complex plane. We shall label these zeros according to their

real parts; Q.. (din) are the zeros ofR[—(1+k);Q] lower-half plane, which is what we need to find:
[R(—1;Q)] with positive real parts, an@,,. (0z,/) are

their counterparts with negative real parts. The indicas’ 1.+k Ql,n(K_i.Ql,n)
run over the entire infinite set of zeros but are otherwise left 1-ivK7 Qun(K—iqyp)
unspecified for now. We can decompadRen terms of its 1
zeros, 14k A1n %_"Ql,n
zl_ian];[ T - )+g , (57
K in| =T 11n
R[—(1+k);—iK]=—(1+Kk)]] (1+i ) i
Qun
whereg™ only has poles and zeros in the upper-half plane.
| 1—; K Separating out the pieces analytic in the upper-half plane
B ' ields
Qa2 yie
Qzn/(K+idon )~ iA
0=-— ’ ———u"+ —nou(0
R-1—iK)= T (1 K ) Lo K ) I;'IQZ,n’(K+|Q2,n’) Ktio® ©)
—-1;—-iK)=-— ol i—.
n'n’ ql,n q2,n’ 1

(54) 1+k Qin %"'Ql,n
1-inpuK™y, 1

: : : : : 1n _+|q1,n

Using this, we rewrite the equation of motion, nv

qln(K_inn)~7 1 QZ,n’(K'HqZ,n’)
- Som - <o — - - . 58
0 (1+k)1_n[ Ql,n(K—iql,n)” 1_,,70,(1”_1 Qo (K+iQzp1) 58
(K+i e
_ Q2,n ( .Q2,n )U++A5(K) ~
o' 20 (K+1Qzp1) Solving foru™ yields
—kqou(0)[] (55  ~, iAo O (K+iQpy) 7
nn’ . K . K ur=——-" : —Uy(0);——~
1—i—|| 1—i K+i0" " Qan(K+igan) 1-igvK
ql,n Qzlnr

X

(1+k)]_—_[ ql,nq2,n(1+ nUQl,n)(K'HQZ,n’) .

) + +i ,
As in the preceding section, the hard part is to decompose nn’ QuaQan(1+7001n) (K+1020)
the last term. The trick is the same, rewriting the numerator (59
as the difference oR’s,

Fourier transforming and evaluatingxt0*, we find
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' A 2(1+ nvQ.,
uy(0)=AT] 2% —uy(0) A—G:u—vz)lmw

n" {an’ *,0

(14
% (1+k)H Q102 ( 7 Q1p) _1l,
n,n’ Ql,nQZ,n’(1+ 77Uql,m)

(65

n#0 qoc,n(1+ 77Uq0,n)
(60) Again, this is very essentially similar to its continuum coun-

terpart, with the real lattice wave vectgy, o playing the role
of the continuum wave vectd,(1), andwith a multiplica-

so that tive correction due to the presence of complex lattice
wavevectors. It should also be noted that this result reduces
A1n(1+70Q1p) to that of Slepyari6] in the —0" limit.
A=uy(0)(1+k  EZ Bra——— 61
u A )1;[ Ql,n(1+77vql,n) 61
VI. SMALL VELOCITY LIMIT
As Ag=u4(0)y1+k, we obtain our desired result We begin our explorations of the content of our key re-
sult, Eq.(65), by examining they fixed, v—0" limit. It is
Ain(1+ 70Q1,) not sufficient to simply sev =0, since asv gets smaller,

(62 more and more terms contribute significantly to the infinite
product, as seen in Fig. 1. The proper treatment is to replace
the infinite product by the exponential of an infinite sum of

As there is exactly one real positive root B{\;Q), it is  logarithms and then approximate the infinite sum by an inte-

convenient to assign this the index 0 and to label the comgral via the EMSF. Note that fow=0, Q. , satisfies

plex roots in order of imaginary part, so that for examplesint? 0x,/2=1, with the solution

Qin andQ; _, are complex conjugates. It is clear the basic o _

structure of the lattice result is similar to the continuum re- Oep = 27N+ o, (663

sult Eq.(28) above, with the continuur®, ;, g, ; replaced ) ) )

by their lattice counterpart®; o, 010, and multiplied by a wherew is the unique real root of the equation, namely,

correction factor due to the additional infinite hierarchy of =2 In(1+ V2). similarly,

complexQ, g’s which solve the lattice dispersion relation. v=0_o i1 (66D

The generalization to finitBl is straightforward and is left Hon '

as an exercise to the reader. The result is the direct generalis e discussed above, we need to consider0, n— o,

zgtlon of_ t_heN= 1 result. At finiteN, there is a set of zeros a=2mnyun fixed. Then, writingq.. ,=27in+ .., .. sat-

with positive real part oR(A,;Q), (R(Ay:Q)), for each  isfies ’

m=1,... N, now labeledQ, n (q1nm). Then

A 1+k [
Ag n Qun(l+7vQy,)’

(2min+ w,)%v?

woc
sinf—=1+ . (67)
A Ainm(1+ 70Q1pm) 2 4[1+ pu(27in+ w,)]
—=+VkN+1 — — 63
Ag :rlf_'r[n Ql,n,m(1+ 77Uql,n,m) 63 2
o
~le— . (68)
is the solution to the lattice problem at finiké It of course 4n°(1tia)
reduces in the limitp— 0" to the result of Marder and Gross Similarl
8], imilarly,
As in the continuum, this rather unwieldy formula simpli- ® o?
fies tremendously in the symmetric crack cdse2 asN SinE— ~ — — (69)
goes to infinity. The procedure for evaluating the limit is 2 4n“(l+ia)

similar to the continuum calculation and so we do not
present the details. What enters again@ig(«), at the two
extremes of the Brillouin zonew=0, 1. If we label

We can now easily approximate the first infinite product,

Q1n(1)=0wn, Q1n(0)=0dg, then they satisfy the disper- I,= H M (70)
sion relations n==« 1+ nvQgp
0=R(=4:q. 1) yielding
1Mo n
. © d
=(1+ 7vQ.. )[4 sintf(q.. o/2) — 4] 0?0 (643 In Hl%j Y In(1+iat o)
— 27U
0=R(0;0on) = (1+ 7v0o,)[4 SiNF(do/2)]— 205y - —In(1+ia+guw)]
(64b
J’w da w,— wq 71
In terms of thesey’s, the infiniteN limit solution is _27m 1+tia
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The second product is somewhat trickier, because a naive
expansion diverges at small We define a regularized prod-

uct

Qo n(27iN)
n5=]]

_— 72
n#0 Jon(27in+ ) (72)

so that[using the product formula for sinh, and the fact that

sinh(/2)=1]

2win+w
=151 ———

sinhw/2)
Y T

(73

Our regularized product is now easily approximated,

R > da ia+ w,nu ia+ wgonu
InIl5~ - = -
—w 27NV ia+wnu i
fm do w,—w—wq 24
“) 2w e (74
Using the identity
Jw da o= 7
» Y1fia ™ (79
we obtain our desired result
Alo+ [ 2114 }1’2
Ag 0 oll2

o j de w,—w— W~ 0= W 26
eex . a(1+|a) (76

This result is, as desired, explicitly independenvobut
would appear to depend om through the very nontriviak
dependence ab,, andwg under the integral. It is possible to
explicitly evaluate the integral for small and large For
large 7, w.,—w~0(1/%?) andwy~0O(1/7), so the integral
vanishes and so

Alo+ IAg=e"*= 1+ \2~1.554. 77

For small# [6], w.,— wq is concentrated at smadl~O(7),
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Im w.,=2 Imsinh™ }(y1— 82)
0 pB=1
={ 2sintpZ-1 1=B<2 (78)
T B=2
and
2sinip p=1
— inh- 1 _ —
Im wg=2 Imsinh *(/ ,87)—[ - B=1.
(79
The integral thus becomes
ff” da w,—w—wy i 2'fld,6 sin !B
27 a(ltia) 2 o m B
_Fd/a sinpi—1—m/2
+2i | —
17 B
i 3++8
=iIn(1+2)=iln2+ =In f)
2 4
=0. (80)

So, again the integral vanishes, and the result for large and
small z is the same. One is led to guess that in fact the
integral vanishes for aly, as indeed a numerical computa-
tion confirms. This is physically reasonable, sinde,+
should be nothing other than the maxindalfor an arrested
crack, which was previously found numericall$0] to be
approximately 1.585. This maximal arrested crackis the
result of a static calculation, and is of course completely
independent ofy. The vanishing of the integral can be dem-
onstrated analytically and is the result of the fact that the
integral has no singularities in the lower-half-plane. One can
then close the contour there and the result is identically zero.
To see this, one has to study the analytic structure of the
functions w.(a), wp(a). Consider first wy(a)
=2 sinhi y(a)], wherey?(a)=—a?/[47*(1+ia)]. Since
sinh }(y)=2In(y/(y?)) + V1+Yy?, w, has a branch cut singu-
larity along the liney?=—r where 1>r>0. Working out
the algebra, in the complex plane this works out to be, for
7n>1, two separate curves. The first is a segment along the
upper imaginary axis fromx=2i7(7—V5?°—1) up to «
=2in(n+n*—1). The second is the circle of radius 1
centered at the poing=i. Similarly, ., has branch cuts for
2>r>1, which are two finite segments along the positive
imaginary axis extending above and below thg branch
cuts. Fory2/2< <1, the branch cut fow, is a sector of
the circle, while the branch cut fes., is the rest of the circle
and a finite piece of the the entire imaginary axis extending
centered abouti2 For 7</2/2, the branch cuts are confined
entirely to a part of the circle. Thus, the singularities forall

so it is appropriate to convert the integral into a principallie entirely in the upper-half plane and, as advertised, the

value integral and do the integral immediately. In the re-
maining integral, we change variablesges «/2%. Then, the
denominator in the integrand reduces t@,1$0 only the odd
(i.e., imaginary part of w,,— wq contributes. For3=0 we
find

integrand is analytic in the lower-half-plane and so the inte-
gral vanishes.

The next step is to extend this calculation to next order in
v. There are two sources for this first correctionvinOne
comes from the higher-order velocity dependence|of,,
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0.5 small velocity region of the graph for variougs, together
with our analytic approximation. We see that the analytic
04l result is confirmed.
VIl. LARGE- » LIMIT
03|
. We now turn to a study of the large limit. In this limit,
as first pointed out by Plat al.[13], the relevant variable is
02T nv. Thus, we study the limig—o, v—0, ¢= 5o fixed. As
we shall see, this calculation will shed much light on the
01| small-v | smallv results we obtained in the preceding section.
To begin the calculation, we need thg ,'s andqg,’s at
v =0 that we obtained in the previous section, E&#f). Then
0'01.0 1.2 1.4 1.6 1.8 2.0

AA, M- ﬁ 1+ 700w n 1+ ¢(2min+ o)

=2« 1+ v 12 1+ ¢(2min
FIG. 3. v vs A/Ag for =0.5,1,2 along with the asymptotic " 70%0n g )

result for smallv, Eq. (84). 1+ we
sm?-( 20

Jon- The other comes from the EMSF correction to the re- = T ' (85)
placement of the infinite sum by an integral. The calculation sinl‘(i)
of the first piece is similar in structure to the leading order 2¢
calculation, just more involved. We expargl ,~2in o
+ wstvos, where the subscrip=o, 0, and find Similarly,

Pt 2 a ) (82) =[] qm‘n=H —zzln-+w=35inl’(§)=z. (86)

ST 27 sinhwg 1+ia? n#0 Jon n#0 min () w

It is straightforward, though tedious, to substitute thiglip, Thus,

1% and expand, giving a multiplicative correction factor of r<1+w¢ 12

r 12 Sin
l+iv © da| 0,0 rin( ) 2) 1+2ia A: 2, } _ 2¢
— — _— I oo_ —_—
2] c2m|a(lria) T 002112 Ac [G-dlz sint] —
2¢
2
L@ i 12
_ 1
I772a2 . (82 = Coﬂ-(ﬂ +\/§ (87)

The inte_grand 'is again a very nontriv!al functionﬁ_)fand @ \We can invert this relation, solving fap in terms ofA,
but again a miracle occurs and the integral vanishes identizhich yields

cally (as seen by numerical computatidar all . The same

analytic argument as above can be used to prove this point. A\2 -1
This leaves us with only the second source foD&) ALl T V2+1
correction, namely, the first endpoint EMSF correction to the ¢=| In c (88)

integral. There are only exponentially small corrections to
the integral representation of,, but sinceH§ does not in-

clude anmn=0 term, we need to subtract the=0 limit of the . ) .
summand, namely, For large A, this approachess[(A/Ag)?—+2]. This
asymptotic result, which is also presented in Fig. 2, is to be

contrasted with the result of our continuum calculation,
~-v, (83 where we foundp=1[(A/Ag)2—1]. Thus, the continuum
infinite-n calculation for allA essentially reproduces the
largeA limit of the lattice calculation, with the correct func-
tional dependence, but with the graph just shifted down
slightly. It is also worth noting that including just thee=0
A~Alg+(1—0/2). (84)  term, instead of the whole infinite product, also gives the

same result, with an intercept ofe2Mhich is intermediate
Thus, the leading small behavior ofA is completely inde- between the continuum calculation and the exact asymptotic
pendentof z. However, it hasA as a strictly decreasing result. ASA decreases, the trug=oc curve falls below the
function ofv. As we shall see in the next section, the turn-asymptotic result, so as to intercept the-axis atA|q+. The
around for largew is a nonperturbative effect. For now, we approach is singular, as can be seen by looking at(&4.
will conclude this section by showing in Fi§ a plot of the for small «. We find

A 2
o e

] 2in
limin
n—0

1
27N+ wo :In(1+v

from In HS‘. This gives a multiplicative correction factor of
(1+v) to I1%, so we find that for small velocity
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2 the subdominant pieces in a little more depth, it is easy to see
A~Alg+| 1+ S e Ve (89  that for >2/2 the leading subdominant piece goes as
Alg+ exp(—1/nv). For smallery, the subdominant piece falls less

, o i rapidly, and has an oscillating component, due to the off-axis
with an essential singularity at smapl. ~ branch cut assuming dominance. This oscillation becomes
Examining Fig. 2 more carefully, we see that our infinite syronger as; is reduced, and gives rise to singularities in the
n result has failed to capture one of the most salient feature§ﬁo limit studied by Slepyatfi6]. For these smalk’s the
of the finite » data, namely, the subcritical nature of the gqjytion is also inconsistefit0], since the first bond break-

bifurcation from the arrested state. Instead, it POSSesses gy occurs beforé=0, in contradiction to the basic assump-
(very) marginally supercritical onset of the moving crack. To ign of the solution ansatz.

reproduce the subcritical bifurcation from our analytics, we
need to generate the next order correction in. 1/

We begin by generating the next order correction to the
g's. We find thato.. , does not change to this order, but now It is worthwhile to contrast the behavior we have seen for
Jop=~2min+ wy, Where Kelvin viscosity with that which obtains Stokes viscosity,
where the dissipation is associated with the mass points and
not the bonds. The calculation in this case is much simpler,
since the troublesome term is not present. For our pur-
poses, it is sufficient to consider oxicontinuum theory, as
This induces a multiplicative correction to of the conclusions we obtain carry over to the full lattice model.

The result foru™ is

VIIl. STOKES VISCOSITY

B 2mwing
77(1+ 47T2n2¢2)l/4

wg g (i2)tan” 127rn¢_ (90)

o
12 irnd(1r2aind) (1) oA Gan(K+iQun)
K40t m Qom(K+idym)’

(94
We are interested in the effect of this correction at srgall
in which case we are again free to replace the sum by afjnere now theQ’s satisfy the dispersion relation
integral. If we add in th&=0 term to the sum, the error will
be exponentially small in 3. So, up to exponentially small (1_,,2)Q2m_vam+Am:o (95)
terms, the correction for smad is (defininga=2mng)
(and theq's the parallel form with\ ;) andb is the Stokes
1— i+ f“ da 1 o (i a viscosity. This can be seen by a simple limiting procedure
27 ) w27 p(1+a®)M1+ia) applied to Eq(24), or _by replaylng the derlv_at|on leading up
(92) 1o Eq. (41) of [10] with b instead of#. This form of the
solution can be shown to be equivalent to that obtained by
The integral vanishes, as can be seen by a substitution dfarder and GrosE3]. This result leads to the solution far,
variablesx=(1+ a?) ¥4 In fact, the integral is nothing
more than the first-order expansion inyléf the integral in A= 61—[ %
Eqg. (76) which we found vanishes identically in. We are m Oom
thus left with a correction factor of simply (L¢/27)=(1
—v/2) up to exponentially small terms. This is precisely theWe are interested in the lardé¢-imit, which we obtain by
smallv correction we found in the previous section. The full defining the renormalized product
behavior to this order for smaib is thus

(96)

HR:H QZ,m(_)\m) (97)

AZ A
AMA|OJr 1+ S e Ve (1_£)‘ (93) m qZ,m( m)
A 0+ 27]

since theQ,’s are linear inA for small A. Applying the

This has the subcritical bifurcation we are seeking. s EMSF, we find that for largé\,

increases from 0A decreases from |y« due to the influ- Or—A

ence of the second factor, until the exponential kicks in and TR~ lim ~ /QZ( [ A(a)]

causes\ to turn around and start increasing. Thet which w0 ¥ Q20)[—A(D)]

the turnaround occurs is, for largg of order 1/Inz (trans-

lating to a velocity of order %fIn %) which goes to 0 ag; bv

goes tooo, but very slowly. Thus at infinitey there is no =[b%?+16(1-0?)]* 8(1-07) (98)

turnaround and\ strictly increases withp as we found in
the zeroth-order calculation at the beginning of this section
The minimum A lies, for large », an amount of order

1/5(In 5)? below Al g+
o . . [ b
Thus we see that it is the subdominant pieces that are A~(2N+1) e[ b?02+16(1—02) Y4\ ———.
responsible for the increase Afwith v, while the perturba- 8(1—v?)

tive pieces give rise to the subcritical bifurcation. Analyzing (99

50 that
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The key difference between this formula and the parallel on¢he viscosity. It is important to understand how viscosity
for  is thatA/e is proportional toN, and notN? as before.  impacts on the stability of the crack. It is clear, as Marder
The reason for this is that the Stokes viscosity is most effecand Gross have pointed o], that the steady-state crack is
tive at damping small wavelengths, and so affects the maainstable in the regime of the backward bifurcation. The more
roscopic stress fields. The Kelvin viscosity does not dampnteresting question is in the higher-velocity regime. Here,
out small wavelengths and only acts on short wavelengthsio systematic studies have been done to examine the role of
Another way to see this is to compute the stress intensityiscosity. It is not clear that the piecewise-linear model con-
factor, which in the Stokes case is inversely proportional tesidered here is altogether appropriate for studies of stability,
Jb. The driving force required to propagate the crack is thusas instabilities can be masked by inconsistencies of the
much larger in the Stokes case. In particular, in the Stokesteady-state solution. Formally, in our model only the bottom
case there is no macroscopic scaling limit, where things justow of springs was allowed to crack, so inconsistency of the
scale with the Griffith driving,Ag. For these reasons, we highv solutions is not a problem. If we had allowed all the
feel that the Stokes viscosity is not a good model of dissipasprings to crack, then inconsistency would indeed set in
tion for studying crack propagation. above some critical velocity. We look forward to reporting

The only way to obtain a nice macroscopic limit whére on work in this direction soon, in both the piecewise-linear
scales likeAg is to artificially scaleb with N so thatb and nonlinear models, along with generalization to the prob-
=bo/N. However, this procedure has no physically satisfy-lem of mode I cracking.
ing motivation, especially when the Kelvin viscosity model
suffers none of these defects.
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