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Steady-state cracks in viscoelastic lattice models. II

David A. Kessler*
Department of Mathematics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720

~Received 29 July 1999!

We present the analytic solution of the mode III steady-state crack in a square lattice with piecewise linear
springs and Kelvin viscosity. We show how the results simplify in the limit of large width. We relate our
results to a model where the continuum limit is taken only along the crack direction. We present results for
small velocity, and for large viscosity, and discuss the structure of the critical bifurcation for small velocity.
We compute the size of the process zone wherein standard continuum elasticity theory breaks down.

PACS number~s!: 46.50.1a, 62.20.Mk
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I. INTRODUCTION

The problem of the dynamics of cracks has received
newed interest recently@1#, motivated in large part by new
sets of experiments@2,3#. These experiments have called in
question some of the predictions of the traditional, co
tinuum mechanics approach to fracture dynamics. The m
striking experimental finding is that cracks exhibit a branc
ing instability long before they reach the predicted limitin
speed of advance. This instability causes increased diss
tion and sets an effective limit on the speed of crack pro
gation. There are hints of such an instability in the co
tinuum approach@4#, but a systematic treatment remai
elusive@5#.

One avenue of exploration that has proven fruitful is t
lattice models of fracture pioneered by Slepyan@6,7# and
further developed by Marder and collaborators@8,9#. These
models, especially in the extreme brittle limit, are simp
enough to allow comprehensive study, both analytically a
by numerical simulation. The lattice models exhibit som
novel effects not seen in the continuum description. Fo
most is the existence of arrested cracks. The lattice mo
also show instabilities at large velocities that may be relev
to the experimentally seen branching instabilities. Thus, i
useful to understand the lattice models in as much deta
possible.

In a previous paper@10#, we embarked on a study of th
effect of dissipation, in the form of a Kelvin viscosity@11#,
on the behavior of steady-state cracks. Kelvin viscos
which amounts to putting damped springs between lat
points, has the physically desirable property that its effe
vanish at large wavelengths. We solved numerically for
dependence of velocity as a function of the driving displa
mentD. We found that the dissipation acts to lower the v
locity and significantly reduces the size of the lattice-induc
small velocity unstable regime where the velocity is a d
creasing function of the driving. We also showed that in
presence of dissipation, the stable regime is well appro
mated by ax-continuum model, wherein the lattice structu
perpendicular to the crack is retained but along the crac
replaced by a naive continuum limit. We also showed tha
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the transverse dimensionN is large, then at distances of orde
N the elastic fields are given by the results of standard c
tinuum fracture theory. On small scales, however, there
boundary layer where the discreteness of the lattice in
transverse direction is important. This boundary layer str
ture is all important in determining the velocity versus dri
ing relation. However, as ourx-continuum model demon
strated, the discreteness in the direction of the crack is
crucial, and primarily affects the small velocity regime.

In the current paper, we study the large-N limit of the
theory. We do this first for ourx-continuum model, where
the structure of the theory is simpler. We then extend this
the full lattice model. In both cases, we present a form
Wiener-Hopf solution of the model for arbitraryN, and then
take the large-N limit. This is in contrast to the work of
Slepyan, who, for the case of infinitesimal dissipation, solv
the infinite-N limit directly. The principal advantage of ou
method is that it allows a discussion of the case of large,
finite, N. It also allows a comparison between the small-sc
and the large-scale structure, whereas Slepyan’s method
produces a solution for small to intermediate scales. T
Slepyan must rely on an implicit matching to large scales
the stress-intensity factor, as opposed to the explicit ma
ing contained in our solution. The Slepyan method, nev
theless, by avoiding the necessity of solving the finiteN
problem, is more easily applied to other cases, such as
mode-I problem, where the finite-N solution is not so easily
obtained.

The plan of the paper is as follows. In Sec. II, we descr
the lattice model and the simplerx-continuum version. In
Sec. III, we lay out our major results. The details of t
calculation are contained in the following sections, first f
the x-continuum problem in Sec. IV, and then for the latti
problem in Sec. V. The small velocity limit is studied i
Section VI and the large viscosity limit in Sec. VII. In Se
VIII, we compare the case of Kelvin viscosity to that of th
other frequently studied model for introducing dissipatio
namely, Stokes viscosity. Stokes viscosity, in the lattice l
guage, is equivalent to having each mass point sit in a
cous medium, and its effects do not vanish at large wa
lengths. We conclude with some observations in Sec. IX

II. DESCRIPTION OF THE MODELS

The lattice model we study is identical to that described
our earlier work @10#. We have a square lattice of mas
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PRE 61 2349STEADY-STATE CRACKS IN VISCOELASTIC . . . . II
points undergoing~scalar! displacement out of the plane. Th
lattice extends infinitely long in thex direction, withN11
rows in they direction. The lattice points are connected
linear ‘‘springs,’’ with spring constant 1, to their neare
neighbors. The top row is displaced a fixed amountD. The
bottom row is connected to a fixed line, with piecewise line
springs. These springs, with spring constantk, ‘‘crack’’ irre-
versibly if they are stretched an amounte. Whenk52, this
model is equivalent to a system of 2N12 rows, loaded by
6D from top and bottom, with a symmetric crack runnin
down the middle, with extension at cracking of the sprin
that bridge the middle being 2e. All the ~uncracked! springs
have a viscous dampingh. The equation of motion for the
system is then

üi , j5S 11h
d

dtD ~ui 11,j1ui 21,j1ui , j 111ui , j 2124ui , j !

~1!

for j Þ1 with ui ,N11[D, and

üi ,15S 11h
d

dtD ~ui 11,j1ui 21,j1ui ,223ui , j !2ku~e2ui ,1!

3S 11h
d

dtDui ,1 . ~2!

Note that in these units, the elastic wave speed is unity, s
velocities are dimensionless, expressed as fractions of
wave speed.

Before proceeding, let us briefly indicate how this mod
is related to others studied in the literature. This model
except for the dissipation mechanism, identical to that st
ied in the infiniteN limit by Slepyan@6# and by Marder and
collaborators@8,9# for finite N. Slepyan looked at the case o
vanishingly small dissipation, and Marder treated the cas
both finite and zero Stokes viscosity. Åstro¨m and Timonen
@12# also performed simulations on such a system w
Stokes viscosity. Plaet al. @13# studied via simulation the
case of Kelvin viscosity using the same piecewise-lin
damped spring model for a mode I crack in a triangular
tice.

We are interested in steady-state cracks, described by
Slepyan traveling wave ansatz

ui , j~ t !5uj~ t2 i /v !, ~3!

which implies that every mass point in a given row und
goes the same time history, translated in time. We choose
origin at time such thatu1(0)5e so that it represents th
moment of cracking of the spring attached to the bottom r
mass point. The equation of motion is best expressed
terms of theN3N coupling matrix

MN~m!53
2~m11! 1

1 22 1

1 22 1

�

1 22 1

1 22

4 .

~4!
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The steady-state equation then reads

ü j~ t !2u~ t !S 11h
d

dtDMj , j 8~0!uj 8~ t !

2u~2t !S 11h
d

dtDMj , j 8~k!uj 8~ t !

2S 11h
d

dtD @uj~ t11/v !22uj~ t !1uj~ t21/v !#

50. ~5!

We will also consider in this paper anx-continuum ver-
sion of this model, where we replace the nonlocal in tim
coupling along the crack with its continuum analog

ü j~ t !2u~ t !S 11h
d

dtDMj , j 8~0!uj 8~ t !

2u~2t !S 11h
d

dtDMj , j 8~k!uj 8~ t !

2S 11h
d

dtD 1

v2
ü j~ t !

50. ~6!

III. SURVEY OF RESULTS

In this section, we survey the major results derived in
bulk of the paper. As the derivations are exceedingly tech
cal, it is useful to present the results first by themselves
that they may be appreciated without getting lost in a we
of technical complications.

We begin by completing the Wiener-Hopf~WH! solution
of the continuousx, discretey model, as the results are sim
pler and are a useful basis for assimilating the more com
cated results of the full lattice model. The key aspect of
solution is the calculation ofD as a function of the crack
velocity v ~in units where the wave speed is unity!. We find

D

DG
5AkN11)

m

q1,m~11hvQ1,m!

Q1,m~11hvq1,m!
, ~7!

which expressesD ~normalized to the Griffith value,

DG5eA2N11, ~8!

at which the uncracked state becomes metastable! in terms of
the wave vectors corresponding to the various normal mo
of the problem. If we label the normal mode eigenvalues
the y-coupling matrix on the uncracked sideM(k) by Lm ,
then Q1,m is the unique positive root of the phonon dispe
sion relation

hvQ31~12v2!Q21~11hvQ!Lm50. ~9!

Similarly, q1,m is the unique positive root of the phonon di
persion relation using the normal mode eigenvaluelm of the
cracked sideM(0).

This formula is fairly complicated, but simplifies tremen
dously for the case of symmetric cracks (k52) in the mac-
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2350 PRE 61DAVID A. KESSLER
roscopic limit N@1. Then, the product above can be pe
formed analytically, with the simple result

D

DG
5~12v2!21/4A2@11hvQ1~1!#

Q1~1!
, ~10!

where Q1(1) is the mode associated with the highest f
quencyy-mode, withL524. For typicalh ’s of order 1,
Q1(1) does not vary much from its zero velocity value of
The resulting curveD(v)/DG starts linearly atv50 from 1
with slopeh and diverges atv51. Thus, in the infiniteN
limit, the velocity never exceeds the wave speed. At a
finite N, however, the velocity crosses the wave speed atD
of orderN1/6DG . It must crossv51 since the velocity in fact
must diverge whenD5DU @10#, when bonds are broken i
the uniformly stressed state. For infiniteN, this is impossible
to achieve sinceDU /DG;O(N1/2)→`. The crossing ofv
51, while it also does not occur at infiniteN, is surprisingly
easy to achieve at finiteN, since the divergence of the cros
ing D with N is so weak. This is especially true for sma
dissipation, where the criticalD scales as (hN)1/6. This ap-
pears a more likely mechanism for explaining the expe
mental observation of supersonic cracks than the tim
dependent forcing hypothesis of Slepyan@14#.

The basic structure is unchanged when we go over to
full lattice model. The essential difference is that the latt
phonon dispersion relation is nonpolynomial and has an
finite number of positive~real-part! solutions for each eigen
modem. TheD2v relationship is

D

DG
5AkN11)

n,m

q1,n,m~11hvQ1,n,m!

Q1,n,m~11hvq1,n,m!
, ~11!

where now the product extends over all positive real-p
rootsQ1,n,m of the lattice phonon dispersion relation

05~11hvQ!@4 sinh2~Q/2!1Lm#2v2Q2 ~12!

for eachLm (lm in the case ofq1,n,m). For a givenm, there
is one real positive root,Q1,0,m (q1,0,m), and an infinite series
of complex-conjugate pairs of complex roots, ordered by
creasing imaginary part. For largen, the imaginary part in-
creases by roughly 2p for each successive root.

Again, for symmetric cracks we can evaluate analytica
the macroscopic~largeN) limit. We obtain

D

DG
5~12v2!21/4A2~11hvq`,0!

q`,0

3F )
nÞ0

q0,n~11hvq`,n!

q`,n~11hvq0,n!G1/2

, ~13!

whereq`,n is the root corresponding to the highest frequen
L524 eigenmode and plays the role ofQ1(1) of the pre-
vious x-continuum result. Theq0,n are the roots correspond
ing to theL50 eigenmode. These do not have a counterp
in thex-continuum calculation as then50 real solution van-
ishes, and only the lattice-inducednÞ0 modes enter.

As indicated by the way we expressed this result, we
consider it as essentially thex-continuum result, Eq.~11!,
with the real latticeq`,0 replacing Q1(1), modified by a
-

-
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multiplicative correction factor involving the complex lattic
modes. To understand the usefulness of this way of think
as well as its limitations, we present in Fig. 1, forh50.5, the
exact numerically computed relationship Eq.~13!, along with
the x-continuum result Eq.~11!. In addition, we plot the lat-
tice result, truncated after itsn50, unu51, andunu55 terms.
We see that at larger velocities all these results are cl
indicating that the lattice-induced shift inq as well as the
additional lattice modes play little role at these velocities.
smaller velocities, the various approximations differ sign
cantly from each other and from the exact curve. We see
fact, that asv approaches 0, more and more terms must
included in the product to achieve an accurate result. T
calculation of the limiting behavior at small velocities r
quires summing all the terms. The result of the calculation
that for all h, as v→0, D approachesDu015A11A2DG ,
the maximalD for which an arrested crack exists. This ge
eralizes the result of Slepyan for infinitesimal dissipation.
v increases,D decreases linearly with theh –independent
slope,2Du01/2 so that the bifurcation from the arrested
subcritical and universal. This ‘‘backward’’ dependenc
with v increasing withdecreasingdriving D, arising from
the subcritical nature of the bifurcation, implies@8# the insta-
bility of the solutions in this smallv regime.

More progress can be made in the largeh limit. Here, at
fixed D, the velocity goes to zero ash increases, so that th
ratio f[hv is fixed. In this limit, we can calculate the infi
nite product and find

D

DG
5FcothS 1

2f D1A2G1/2

. ~14!

This infinite-h result, together with the exact result for var
oush ’s, is presented in Fig. 2.

We see that this calculation does not reproduce the s
critical bifurcation from the arrested crack at small velo
ties, which is a higher order effect. We can evaluate this 1h
correction near the bifurcation at smallf, and find

FIG. 1. v vs D/DG in thex-continuum approximation, Eq.~11!,
and in the exact lattice model, together with the lattice result tr
cated after then50 term,unu51 andunu55 terms.
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PRE 61 2351STEADY-STATE CRACKS IN VISCOELASTIC . . . . II
D;Du01S 11
DG

2

Du01
2 e21/fD S 12

f

2h D , ~15!

which reproduces the smallv behavior described above an
shows that theh dependent corrections are in fact expone
tially small in v. The resultingD2v curve starts atDu01 at
v50, heads back linearly for a short distance of ord
1/h(ln h)2, and then sharply veers forward.

A last result worth noting is that whereas the Kelvin v
cosity model analyzed herein has a nice macroscopic l
when expressed in terms ofDG , the model with Stokes vis
cosity, where the dissipation in put in the masses and no
the bonds, does not have such a limit. There anO(1) Stokes
viscosity at the microscopic level changes the continu
elastic fields and requires an ever-increasingD/DG as the
sample is made wider.

IV. x-CONTINUUM MODEL

We begin our analysis with the solution of th
x-continuum model, Eq.~6!, introduced in Kessler and Le
vine @10#. It is important to remember that in this model, th
lattice structure in they-direction is left unchanged. The so
lution of the lattice model is similar in structure to that of th
x-continuum model, but the latter is a simpler context
which to develop the necessary techniques. Furthermore
x-continuum model is an interesting approximation in
own right, which captures a significant amount of the str
ture of the full lattice problem.

In Kessler, and Levine@10#, a Wiener–Hopf analysis o
the problem was initiated. In this analysis, the key techniq
is to decompose all the terms in the steady-state equatio
motion into terms analytic in the upper- and lower-h
planes, respectively. However, the analysis was not car
to completion, due to the presence of one term whose
composition was not evident. Here we use a trick to acco
plish the decomposition of this last remaining term, a
thereby complete the solution of the problem. We choose
to reproduce the lengthy preliminary stages of this calcu
tion, for which the interested reader is referred to@10#. We
do, however, reiterate the definition of the relevant notati

FIG. 2. hv vs D/DG for h52,4,8,16 along with the asymptoti
result for largeh, Eq. ~14!.
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introduced there, so that the current exposition is minima
self-contained.

After decomposing the Fourier transform,u(K̃), of the

bottom row displacement field into pieces,ũ6, analytic in
the upper and lower half-planes, respectively, we obtai
the following equation,@see Eq.~42! in @10##:

05ũ1)
m

~K1 iq2,m!~K1 iq3,m!

~K1 iQ2,m!~K1 iQ3,m!
2Dd~K !)

m

q2,mq3,m

Q2,mQ3,m

1 iku1~0!

)
l

~K2 ix1,l !~K1 ix2,l !~K1 ix3,l !

)
m

~K2 iq1,m!~K1 iQ2,m!~K1 iQ3,m!

1)
m

K2 iQ1,m

K2 iq1,m
. ~16!

Here,u1(0)5e is the displacement of the bottom row att
50, the moment of cracking. TheQ ~q! are zeros of the
phonon dispersion relation for the uncracked~cracked! sys-
tem. Formally, letLm , m51, . . . ,N denote the eigenvalue
of theN3N ~uncracked! coupling matrixMN(k) defined in
Eq. ~4! above. Define the polynomial specifying the dispe
sion relation,P(l,Q), by

P~l,Q!5hvQ31~12v2!Q21~11hvQ!l. ~17!

Then, P(Lm ,Q) has, for eachm, three roots, one positive
which we denoteQ1,m , and two with negative real parts
which we denote by2Q2,m , 2Q3,m , so that all theQ’s
have positive real parts. Similarly,q1,m , 2q2,m , 2q3,m are
the roots of P(lm ,q), for the eigenvalueslm of the
~cracked! coupling matrixMN(0). Thex ’s are zeros of the
phonon dispersion relation of the system minus the bott
row. Thus they are roots ofP(l m ,x), where thel m are
eigenvalues of the (N21)3(N21) coupling matrix
MN21(1). They are an artifact of the solution method w
employed, solving for all the displacements in terms of t
bottom row displacement only. As we shall see, they in f
play no role in the final solution, and the whole trick is
eliminating them.

The problematic term is then

ik

)
l

~K2 ix1,l !~K1 ix2,l !~K1 ix3,l !

)
m

~K2 iq1,m!~K1 iQ2,m!~K1 iQ3,m!

~18!

as it involves singularities and poles in both the upper- a
lower-half planes. To proceed, we rewrite the numerator
ing the following manipulations:
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)
l

~K2 ix1,l !~K1 ix2,l !~K1 ix3,l !

5S 12 ihvK

ihv D N21

detN21@ f ~K !I1M~1!#

5
1

k S 12 ihvK

ihv D N21

$detN@ f ~K !I1M~0!#

2detN@ f ~K !I1M~k!#%

5
1

k S ihv
12 ihvK D F)

m
~K2 iq1,m!~K1 iq2,m!~K1 iq3,m!

2)
m

~K2 iQ1,m!~K1 iQ2,m!~K1 iQ3,m!G . ~19!

The first line of this chain employed an identity from@10#,
Eq. ~40!, relating the numerator to the determinant of a c
tain matrix formed fromMN21(1) and the identity matrixI
together with the function

f ~K !5@ ihvK32~12v2!K2#/~12 ihvK !. ~20!

The second line in this chain, claiming this determinant
equivalent, up to a constant factor, to the difference of t
N3N determinants can be proven by expanding each of
matrices about the first row. The last line reexpresses eac
these two determinants using more identities from@10#, Eqs.
~38!–~39!.

After these manipulations, our term can be written as

ik

)
l

~K2 ix1,l !~K1 ix2,l !~K1 ix3,l !

)
m

~K2 iq1,m!~K1 iQ2,m!~K1 iQ3,m!

5
hv

12 ihvK F)
m

K2 iQ1,m

K2 iq1,m

2)
m

~K1 iq2,m!~K1 iq3,m!

~K1 iQ2,m!~K1 iQ3,m!G . ~21!

As the outside factor has a pole at2 i /hv in the lower-
half plane, the second term only has singularities and p
in the lower-half plane and so is in the desired form. The fi
term is still mixed and requires further massaging. The id
is to subtract out the unique lower-half plane pole so t
what is left has only upper-half plane poles and zeros. Th

hv
12 ihvK)

m

K2 iQ1,m

K2 iq1,m
5

hv
12 ihvK)

m

1

hv
1Q1,m

1

hv
1q1,m

1g2,

~22!

where nowg2 has only upper-half plane poles and zero
We will not need the explicit form ofg2 in the calculation.
What we have is now sufficient to solve forũ1, the Fourier
transform of the displacement of the bottom masses in
-

s
o
e
of

es
t
a
t
s,

.

e

crack region,u1(x)u(x). Looking at the part of Eq.~16!
analytic in the upper half-plane, we get

05ũ1)
m

~K1 iq2,m!~K1 iq3,m!

~K1 iQ2,m!~K1 iQ3,m!
2

iD

K1 i01)
m

q2,mq3,m

Q2,mQ3,m

1u1~0!
hv

12 ihvK F)
m

11hvQ1,m

11hvq1,m

2)
m

~K1 iq2,m!~K1 iq3,m!

~K1 iQ2,m!~K1 iQ3,m!G . ~23!

Solving for ũ1, we find

ũ15
iD

K1 i01)
m

q2,mq3,m~K1 iQ2,m!~K1 iQ3,m!

Q2,mQ3,m~K1 iq2,m!~K1 iq3,m!

2u1~0!
hv

12 ihvK

3F)
m

~11hvQ1,m!~K1 iQ2,m!~K1 iQ3,m!

~11hvq1,m!~K1 iq2,m!~K1 iq3,m!
21G .

~24!

Fourier transforming and evaluating atx501 yields

u1~0!5D)
m

q2,mq3,m

Q2,mQ3,m
2u1~0!F)

m

~11hvQ1,m!

~11hvq1,m!
21G

~25!

so that

u1~0!5D)
m

q2,mq3,m~11hvq1,m!

Q2,mQ3,m~11hvQ1,m!
. ~26!

Using u1(0)5e, DG5eAkN11 and the relations@see Eq.
~43! in @10##

)
m

q1,mq2,mq3,m5~hv !2N, ~27a!

)
m

Q1,mQ2,mQ3,m5~kN11!~hv !2N, ~27b!

we obtain our desired result

D

DG
5AkN11)

m

q1,m~11hvQ1,m!

Q1,m~11hvq1,m!
. ~28!

The primary benefit of this method of solution over th
direct approach employed in@10# is that for the symmetric
crack (k52) we can take the large-N limit. To do this, we
break up theN-fold product into two terms. The first is

P15)
m

~11hvQ1,m!

~11hvq1,m!
. ~29!
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We transform the product into the exponential of a sum o
logarithms, a sum which forN large we can approximate b
an integral, via the Euler-MacLauren Summation Form
~EMSF! @15#. Thus,

ln P1'E
0

N

dm@ ln~11hvQ1,m!2 ln~11hvq1,m!#.

~30!

Now, for k52, Lm524 sin2(pm/2N11) and lm5
24 sin2@p(m21/2)/2N11#. If we definea5m/N, then we
see that

q1~a!5Q1@a21/~2N!#'Q1~a!2
1

2N

dQ1

da
. ~31!

The integral is now a total derivative, and so

ln P1' 1
2 E

0

1

da
d

da
@ ln~11hvQ1,m!#

5 1
2 $ ln@11hvQ1~1!#2 ln@11hvQ1~0!#%. ~32!

Whena51, m5N, giving Lm'24, and soQ1(1) satisfies

05P@24,Q1~1!#

5hvQ1~1!31~12v2!Q1~1!224@11hvQ1~1!#. ~33!

Similarly, whena approaches 0, so doesm and so alsoLm .
This in turn implies thatQ1(0)50. So, finally,

P1'@11hvQ1~1!#1/2. ~34!

The second factor is slightly more difficult to treat, sin
the numerator and denominator both vanish asm→0. To
handle this, we regularize the product by multiplying a
dividing by )mAlm /Lm, which we can perform analytically
Then, the regularized product,P2

R , can be transformed to th
exponential of an integral of a total derivative, which can
calculated explicitly. In detail,

P2
R5)

m

Q1,mA2lm

q1,mA2Lm

, ~35!

so that

ln P2
R'E

0

1

da
1

2

d

da
ln

Q1~a!

A2L~a!

5
1

2
$ ln@Q1~1!/2#2 ln~1/A12v2!%, ~36!

where we have used the fact that fora small, Q1(a)
'A2L(a)/(12v2). Thus,

P2
R'S Q1~1!A12v2

2 D 1/2

. ~37!

Also,
r

a

e

P25P2
R)

m
ALm /lm

5P2
RAdetM~2!/detM~0!

5P2
RA2N11, ~38!

so putting all the pieces together yields the simple result

D

DG
5AkN11

P1

P2
5~12v2!21/4A2@11hvQ1~1!#

Q1~1!
,

~39!

which expressesD in terms ofQ1(1), thewave vector at the
end of the Brillouin zone.

The most striking lesson of this formula is thatD diverges
at v51, the wave speed. Thus, while at any finiteN, there is
no upper limit to the velocity, at infiniteN the wave speed is
an absolute upper bound to the crack velocity. At largeD, v
approaches unity from below as 1/D4. A second lesson is
that at small velocity,D;DG(11hv), so thatD approaches
DG linearly, as is generally true for thisx-continuum model.
A third implication is the behavior at largeh. For fixedD, v
decreases ash gets large, so thatQ1(1) satisfies

0'hvQ1~1!31Q1~1!224@11hvQ1~1!#

5@11hvQ1~1!#@Q1~1!224#, ~40!

so thatQ1(1)'2. Substituting this in Eq.~39! gives

D

DG
'A112hv ~41!

or

hv'S D

DG
D 2

21. ~42!

In this largeh limit, of course,D is a function of the scaling
variablehv, which was first introduced in@13#.

We have seen how at infiniteN, the crack speedv never
crosses unity, the wave speed. However, at any finiteN, there
is a D for which the crack speed crosses unity, which m
diverge withN. We now calculate how this threshold scal
with N. The key to the calculation isP2, since it is the
vanishing ofP2 which leads to the divergence ofD at v
51 for N infinite. To compute the value ofP2 at v51 for
finite largeN, we need to choose a different regularizatio
We now define

P2
R5)

m

Q1,m~2lm!1/3

q1,m~2Lm!1/3
~43!

so that

P25P2
RF)

m

Lm

lm
G1/3

5~2N11!1/3P2
R. ~44!

Now, sinceQ1(a)/@2L(a)#1/3 approaches the finite limi
1/h1/3 asa goes to 0,P2

R has a finite limit atv51 asN goes
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to infinity, namely,P2
R'AQ1(1)(h/4)1/3. Using the infinite

N limit of P1 from Eq. ~34!, we get

D

DG
5A2N11

P1

P2
;~N!1/6F2@11hQ1~1!#

Q1~1! G1/2

. ~45!

Thus, the thresholdD scales asN1/6DG , in accord with the
numerical evidence discussed in@10#. The coefficient goes to
2 for h large, and vanishes ash1/6 for small h.

Another manifestation of this same phenomenon, the
appearance of thev51 crossing in the infinite-N limit, is the
nonuniformity of the the large-N limit as v approaches 1
Working out the corrections to the EMSF, we find that

P1~N!'P1~N5`!S 12
phv

8A12v2N
D ~46!

and

P2
R~N!'P2

R~N5`!* S 11
hv3

16~12v2!3/2N
D . ~47!

Thus, the relative error of the infinite-N approximation is
O(1/N), and diverges asv approaches 1 as (12v)23/2. It is
ot

e
ac
e
th
th

-

s-

also interesting to note that the relative error vanishes av
goes to zero, so that the infinite-N approximation becomes
better at small velocities.

One last interesting piece of information we can der
from our solution is the size of the ‘‘process zone,’’ th
region where the solution from continuum elastic theo
breaks down. The leading-order macroscopic solution w
derived in@10#, and exhibited the classic square-root sing
larity at the crack tip,t50. This singularity is really presen
only at infinite N, and is cut off by the upper limit on the
Q’s, ~relative to the smallestQ;1/N) at finite N. Math-
ematically, this gives rise to a lower-order boundary lay
near the crack tip. This was demonstrated graphically in F
8 of @10#. As can be seen in this figure, the inner solution
the boundary layer relaxes exponentially to the outer c
tinuum solution. The size of this boundary layer, or ‘‘proce
zone,’’ as it is called in the engineering literature, is set
the rate of the exponential decay of the inner solution. W

can determine this by studying our exact solution forũ1, Eq.
~24!, for K ’s of order 1. Using the EMSF to evaluate th
infinite product, similar to the derivations above, we find
ũ15
iD

A2N11~K1 i01!
S Q1~1!A12v2@K1 iQ2~1!#@K1 iQ3~1!#

2@K1 iQ2~0!#@K1 iQ3~0!#
D 1/2

1
i e

K1 i /hv F12S @11hvQ1~1!#@K1 iQ2~1!#@K1 iQ3~1!#

@11hvQ1~0!#@K1 iQ2~0!#@K1 iQ3~0!# D
1/2G . ~48!
e
en-

r

Using Q1(0)5Q2(0)50, Q3(0)5(12v2)/hv, and the re-
sult for D, Eq. ~39!, we get

ũ15 i eF @11hvQ1~1!#@K1 iQ2~1!#@K1 iQ3~1!#

~K1 i01!@K1 i ~12v2!/hv#
G 1/2

3S 1

K1 i01
2

1

K1 i /hv D 1
i e

K1 i /hv
. ~49!

Examining this expression for smallK, we find the ex-
pectedK23/2 singularity, which gives rise to the square-ro
singularity of the outer solution. The coefficient of theK23/2

singularity to leading order inN is D i 3/2N21/2(12v2)21/4,
which reproduces the sameh independent coefficient of th
square-root singularity, or equivalently stress-intensity f
tor, found in@10#. The size of the process zone is determin
by the singularity nearest the real line, since this gives
slowest, and therefore dominant, exponential decay of
inner solution. For smallh, this singularity is atK5
2 iQ2(1)'22i /A12v2, so the process zone is truly micro
scopic, unless the velocity is very close to 1. For largeh, the
dominant singularity is atK52 iQ3(1)'2 i /hv, so the pro-
cess zone grows linearly withh in size.
-
d
e
e

V. LATTICE MODEL

In this section, we generalize our solution of th
x-continuum model to the lattice model. For ease of pres
tation, we will present the derivation only in theN51 case.
The case of generalN follows in a straightforward manne
from this derivation and that of the continuum finiteN model
presented in the preceding section.

Our derivation follows directly along the lines of our WH
treatment of the continuumN51 problem in@10#. The equa-
tion of motion of the steady-state crack is

ü~ t !5S 11h
d

dtD @u~ t11/v !23u~ t !1u~ t21/v !#2ku~2t !

3S 11h
d

dtDu~ t !. ~50!

Upon Fourier transforming, we find

05~12 ihvK !F4 sinh2S iK

2 D21G ũ1v2K2ũ

2k~12 ihvK !ũ21Dd~K !2khvu~0!, ~51!



e
o

th
he

le

o
to

is
e

ne.
ane

PRE 61 2355STEADY-STATE CRACKS IN VISCOELASTIC . . . . II
whereũ is the Fourier transform ofu and ũ6 are the trans-
forms of u(6t)u(t). We define the function

R~l;Q![~11hvQ!@4 sinh2~Q/2!1l#2v2Q2 ~52!

in terms of which

05R@2~11k!;2 iK #ũ21R~21;2 iK !ũ11Dd~K !

2khvu~0!. ~53!

This function,R(l;Q), which is the lattice equivalent of th
polynomial P employed in the preceding section, does n
have three roots, but, in fact, an infinite set of zeros in
complex plane. We shall label these zeros according to t
real parts; Q1,n (q1,n) are the zeros ofR@2(11k);Q#
@R(21;Q)# with positive real parts, andQ2,n8 (q2,n8) are
their counterparts with negative real parts. The indicesn, n8
run over the entire infinite set of zeros but are otherwise
unspecified for now. We can decomposeR in terms of its
zeros,

R@2~11k!;2 iK #52~11k!)
n,n8

S 11 i
K

Q1,n
D

3S 12 i
K

Q2,n8
D ,

R~21;2 iK !52)
n,n8

S 12 i
K

q1,n
D S 11 i

K

q2,n8
D .

~54!

Using this, we rewrite the equation of motion,

052~11k!)
n

q1,n~K2 iQ1,n!

Q1,n~K2 iq1,n!
ũ2

2)
n8

Q2,n8~K1 iq2,n8!

q2,n8~K1 iQ2,n8!
ũ11Dd~K !

2khvu~0!)
n,n8

1

S 12 i
K

q1,n
D S 12 i

K

Q2,n8
D . ~55!

As in the preceding section, the hard part is to decomp
the last term. The trick is the same, rewriting the numera
as the difference ofR’s,
t
e
ir

ft

se
r

k)
n,n8

1

S 12 i
K

q1,n
D S 12 i

K

Q2,n8
D

5
1

12 ihvK

R~21;2 iK !2R„2~11k!;2 iK …

)
n,n8

S 12 i
K

q1,n
D S 12 i

K

Q2,n8
D

5
11k

12 ihvK)
n

q1,n~K2 iQ1,n!

Q1,n~K2 iq1,n!

2
1

12 ihvK)
n8

Q2,n8~K1 iq2,n8!

q2,n8~K1 iQ2,n8!
. ~56!

As before, the second term is now fine, but the first term
still mixed. Again we subtract out the unique pole in th
lower-half plane, which is what we need to findũ1:

11k

12 ihvK)
n

q1,n~K2 iQ1,n!

Q1,n~K2 iq1,n!

5
11k

12 ihvK)
n8

q1,nS 1

hv
1Q1,nD

Q1,nS 1

hv
1 iq1,nD 1g2, ~57!

whereg2 only has poles and zeros in the upper-half pla
Separating out the pieces analytic in the upper-half pl
yields

052)
n8

Q2,n8~K1 iq2,n8!

q2,n8~K1 iQ2,n8!
ũ11

iD

K1 i01
2hvu~0!

3F 11k

12 ihvK)
n

q1,nS 1

hv
1Q1,nD

Q1,nS 1

hv
1 iq1,nD

2
1

12 ihvK)
n8

Q2,n8~K1 iq2,n8!

q2,n8~K1 iQ2,n8!G . ~58!

Solving for ũ1 yields

ũ15
iD

K1 i01)
n8

q2,n8~K1 iQ2,n8!

Q2,n8~K1 iq2,n8!
2u1~0!

hv
12 ihvK

3F ~11k!)
n,n8

q1,nq2,n~11hvQ1,n!~K1 iQ2,n8!

Q1,nQ2,n~11hvq1,n!~K1 iq2,n8!
21G .

~59!

Fourier transforming and evaluating atx501, we find
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u1~0!5D)
n8

q2,n8

Q2,n8

2u1~0!

3F ~11k!)
n,n8

q1,nq2,n8~11hvQ1,n!

Q1,nQ2,n8~11hvq1,m!
21G ,

~60!

so that

D5u1~0!~11k!)
n

q1,n~11hvQ1,n!

Q1,n~11hvq1,n!
. ~61!

As DG5u1(0)A11k, we obtain our desired result

D

DG
5A11k )

n

q1,n~11hvQ1,n!

Q1,n~11hvq1,n!
. ~62!

As there is exactly one real positive root ofR(l;Q), it is
convenient to assign this the index 0 and to label the co
plex roots in order of imaginary part, so that for examp
Q1,n andQ1,2n are complex conjugates. It is clear the ba
structure of the lattice result is similar to the continuum
sult Eq. ~28! above, with the continuumQ1,1, q1,1 replaced
by their lattice counterpartsQ1,0, q1,0, and multiplied by a
correction factor due to the additional infinite hierarchy
complexQ, q’s which solve the lattice dispersion relation

The generalization to finiteN is straightforward and is lef
as an exercise to the reader. The result is the direct gene
zation of theN51 result. At finiteN, there is a set of zero
with positive real part ofR(Lm ;Q), (R(lm ;Q)), for each
m51, . . . ,N, now labeledQ1,n,m (q1,n,m). Then

D

DG
5AkN11 )

n,m

q1,n,m~11hvQ1,n,m!

Q1,n,m~11hvq1,n,m!
~63!

is the solution to the lattice problem at finiteN. It of course
reduces in the limith→01 to the result of Marder and Gros
@8#.

As in the continuum, this rather unwieldy formula simp
fies tremendously in the symmetric crack casek52 as N
goes to infinity. The procedure for evaluating the limit
similar to the continuum calculation and so we do n
present the details. What enters again areQ1,n(a), at the two
extremes of the Brillouin zonea50, 1. If we label
Q1,n(1)5q`,n , Q1,n(0)5q0,n then they satisfy the disper
sion relations

05R~24;q`,n!

5~11hvq`,n!@4 sinh2~q`,n/2!24#2v2q`,n
2 , ~64a!

05R~0;q0,n!5~11hvq0,n!@4 sinh2~q0,n/2!#2v2q0,n
2 .

~64b!

In terms of theseq’s, the infiniteN limit solution is
-

-

f

li-

t

D

DG
5~12v2!21/4A2~11hvq`,0!

q`,0

3F )
nÞ0

q0,n~11hvq`,n!

q`,n~11hvq0,n!G1/2

. ~65!

Again, this is very essentially similar to its continuum cou
terpart, with the real lattice wave vectorq`,0 playing the role
of the continuum wave vectorQ1(1), andwith a multiplica-
tive correction due to the presence of complex latt
wavevectors. It should also be noted that this result redu
to that of Slepyan@6# in the h→01 limit.

VI. SMALL VELOCITY LIMIT

We begin our explorations of the content of our key r
sult, Eq.~65!, by examining theh fixed, v→01 limit. It is
not sufficient to simply setv50, since asv gets smaller,
more and more terms contribute significantly to the infin
product, as seen in Fig. 1. The proper treatment is to rep
the infinite product by the exponential of an infinite sum
logarithms and then approximate the infinite sum by an in
gral via the EMSF. Note that forv50, q`,n satisfies
sinh2 q`,n/251, with the solution

q`,n
v5052p in1v, ~66a!

wherev is the unique real root of the equation, namely,v
52 ln(11A2). Similarly,

q0,n
v5052p in. ~66b!

As we discussed above, we need to considerv→0, n→`,
a[2phvn fixed. Then, writingq`,n[2p in1v` , v` sat-
isfies

sinh2
v`

2
511

~2p in1v`!2v2

4@11hv~2p in1v`!#
~67!

'12
a2

4h2~11 ia!
. ~68!

Similarly,

sinh2
v0

2
'2

a2

4h2~11 ia!
. ~69!

We can now easily approximate the first infinite produ

P15 )
n52`

`
11hvq`,n

11hvq0,n
~70!

yielding

ln P1'E
2`

` da

2phv
@ ln~11 ia1hvv`!

2 ln~11 ia1hvv0!#

'E
2`

` da

2p

v`2v0

11 ia
. ~71!
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The second product is somewhat trickier, because a n
expansion diverges at smalla. We define a regularized prod
uct

P2
R[ )

nÞ0

q`,n~2p in !

q0,n~2p in1v!
, ~72!

so that@using the product formula for sinh, and the fact th
sinh(v/2)51#

P25P2
R)

nÞ0

2p in1v

2p in

5
sinh~v/2!

v/2
P2

R

5
2

v
P2

R. ~73!

Our regularized product is now easily approximated,

ln P2
R'E

2`

` da

2phv F lnS ia1v`hv
ia1vhv D2 lnS ia1v0hv

ia D G
'E

2`

` da

2p

v`2v2v0

ia
. ~74!

Using the identity

E
2`

`

da
v

11 ia
5pv, ~75!

we obtain our desired result

Du01

DG
5F 2P1

q`,0P2
G1/2

'ev/4 expS i

2E2`

` da

2p

v`2v2v0

a~11 ia! D . ~76!

This result is, as desired, explicitly independent ofv, but
would appear to depend onh through the very nontrivialh
dependence ofv` andv0 under the integral. It is possible t
explicitly evaluate the integral for small and largeh. For
largeh, v`2v;O(1/h2) andv0;O(1/h), so the integral
vanishes and so

Du01 /DG5ev/45A11A2'1.554. ~77!

For smallh @6#, v`2v0 is concentrated at smalla;O(h),
so it is appropriate to convert the integral into a princip
value integral and do thev integral immediately. In the re
maining integral, we change variables tob5a/2h. Then, the
denominator in the integrand reduces to 1/b, so only the odd
~i.e., imaginary! part of v`2v0 contributes. Forb>0 we
find
ve

t

l

Im v`52 Im sinh21~A12b2!

5H 0 b<1

2 sin21Ab221 1<b<2

p b>2

~78!

and

Im v052 Im sinh21~A2b2!5H 2 sin21b b<1

p b>1.
~79!

The integral thus becomes

E
2`

` da

2p

v`2v2v0

a~11 ia!
5

iv

2
22i E

0

1db

p

sin21b

b

12i E
1

2db

p

sin21Ab2212p/2

b

5 i ln~11A2!2 i ln 21
i

2
lnS 31A8

4 D
50. ~80!

So, again the integral vanishes, and the result for large
small h is the same. One is led to guess that in fact
integral vanishes for allh, as indeed a numerical computa
tion confirms. This is physically reasonable, sinceDu01

should be nothing other than the maximalD for an arrested
crack, which was previously found numerically@10# to be
approximately 1.55DG . This maximal arrested crackD is the
result of a static calculation, and is of course complet
independent ofh. The vanishing of the integral can be dem
onstrated analytically and is the result of the fact that
integral has no singularities in the lower-half-plane. One c
then close the contour there and the result is identically z

To see this, one has to study the analytic structure of
functions v`(a), v0(a). Consider first v0(a)
52 sinh21@y(a)#, wherey2(a)[2a2/@4h2(11 ia)#. Since
sinh21(y)52 ln(A(y2))1A11y2, v0 has a branch cut singu
larity along the liney252r where 1.r .0. Working out
the algebra, in the complexa plane this works out to be, fo
h.1, two separate curves. The first is a segment along
upper imaginary axis froma52ih(h2Ah221) up to a
52ih(h1Ah221). The second is the circle of radius
centered at the pointh5 i . Similarly, v` has branch cuts for
2.r .1, which are two finite segments along the positi
imaginary axis extending above and below thev0 branch
cuts. ForA2/2,h,1, the branch cut forv0 is a sector of
the circle, while the branch cut forv` is the rest of the circle
and a finite piece of the the entire imaginary axis extend
centered about 2i . Forh,A2/2, the branch cuts are confine
entirely to a part of the circle. Thus, the singularities for allh
lie entirely in the upper-half plane and, as advertised,
integrand is analytic in the lower-half-plane and so the in
gral vanishes.

The next step is to extend this calculation to next orde
v. There are two sources for this first correction inv. One
comes from the higher-order velocity dependence ofq`,n ,
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q0,n . The other comes from the EMSF correction to the
placement of the infinite sum by an integral. The calculat
of the first piece is similar in structure to the leading ord
calculation, just more involved. We expandqs,n'2p in
1vs1vss , where the subscripts5`, 0, and find

ss5
avs

2h sinhvs

2i 2a

11 ia2
. ~81!

It is straightforward, though tedious, to substitute this inP1 ,
P2

R and expand, giving a multiplicative correction factor o

11
iv
2 E2`

` da

2p F s`2s0

a~11 ia!
1 ih~v`

2 2v0
2!

112ia

2a2~11 ia!2

2 ih
v2

2a2G . ~82!

The integrand is again a very nontrivial function ofh anda,
but again a miracle occurs and the integral vanishes ide
cally ~as seen by numerical computation! for all h. The same
analytic argument as above can be used to prove this po

This leaves us with only the second source for aO(v)
correction, namely, the first endpoint EMSF correction to
integral. There are only exponentially small corrections
the integral representation ofP1, but sinceP2

R does not in-
clude ann50 term, we need to subtract then50 limit of the
summand, namely,

lim
n→0

lnS 2p in

2p in1v0
D5 lnS 1

11v D'2v, ~83!

from lnP2
R. This gives a multiplicative correction factor o

(11v) to P2
R , so we find that for small velocity

D;Du01~12v/2!. ~84!

Thus, the leading smallv behavior ofD is completely inde-
pendentof h. However, it hasD as a strictly decreasing
function of v. As we shall see in the next section, the tur
around for largerv is a nonperturbative effect. For now, w
will conclude this section by showing in Fig. 3 a plot of the

FIG. 3. v vs D/DG for h50.5,1,2 along with the asymptoti
result for smallv, Eq. ~84!.
-
n
r

ti-

t.

e
o

-

small velocity region of the graph for varioush ’s, together
with our analytic approximation. We see that the analy
result is confirmed.

VII. LARGE- h LIMIT

We now turn to a study of the largeh limit. In this limit,
as first pointed out by Plaet al. @13#, the relevant variable is
hv. Thus, we study the limith→`, v→0, f[hv fixed. As
we shall see, this calculation will shed much light on t
small v results we obtained in the preceding section.

To begin the calculation, we need theq`,n’s andq0,n’s at
v50 that we obtained in the previous section, Eq.~66!. Then

P15 )
n52`

`
11hvq`,n

11hvq0,n
5)

2`

`
11f~2p in1v!

11f~2p in !

5

sinhS 11vf

2f D
sinhS 1

2f D . ~85!

Similarly,

P25 )
nÞ0

q`,n

q0,n
5 )

nÞ0

2p in1v

2p in
5

2

v
sinhS v

2 D5
2

v
. ~86!

Thus,

D

DG
5F 2P1

q`,0P2
G1/2

5F sinhS 11vf

2f D
sinhS 1

2f D G 1/2

5FcothS 1

2f D1A2G1/2

. ~87!

We can invert this relation, solving forf in terms ofD,
which yields

f5F ln
S D

DG
D 2

2A211

S D

DG
D 2

2A221
G 21

. ~88!

For large D, this approaches1
2 @(D/DG)22A2#. This

asymptotic result, which is also presented in Fig. 2, is to
contrasted with the result of our continuum calculatio
where we foundf5 1

2 @(D/DG)221#. Thus, the continuum
infinite-h calculation for all D essentially reproduces th
large-D limit of the lattice calculation, with the correct func
tional dependence, but with the graph just shifted do
slightly. It is also worth noting that including just then50
term, instead of the whole infinite product, also gives t
same result, with an intercept of 2/v which is intermediate
between the continuum calculation and the exact asympt
result. AsD decreases, the trueh5` curve falls below the
asymptotic result, so as to intercept theD –axis atDu01. The
approach is singular, as can be seen by looking at Eq.~87!
for small a. We find
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D;Du01S 11
DG

2

Du01
2 e21/fD ~89!

with an essential singularity at smallf.
Examining Fig. 2 more carefully, we see that our infin

h result has failed to capture one of the most salient featu
of the finite h data, namely, the subcritical nature of th
bifurcation from the arrested state. Instead, it possess
~very! marginally supercritical onset of the moving crack. T
reproduce the subcritical bifurcation from our analytics,
need to generate the next order correction in 1/h.

We begin by generating the next order correction to
q’s. We find thatq`,n does not change to this order, but no
q0,n'2p in1v0, where

v05
2p inf

h~114p2n2f2!1/4
e2( i /2)tan212pnf. ~90!

This induces a multiplicative correction toD of

12 (
nÞ0

v0

4p inf~112p inf!
. ~91!

We are interested in the effect of this correction at smallf,
in which case we are again free to replace the sum by
integral. If we add in then50 term to the sum, the error wil
be exponentially small in 1/f. So, up to exponentially sma
terms, the correction for smallf is ~defininga52pnf)

12
f

2h
1E

2`

` da

2p

1

h~11a2!1/4~11 ia!
e2( i /2)tan21a.

~92!

The integral vanishes, as can be seen by a substitutio
variables x5(11a2)21/4. In fact, the integral is nothing
more than the first-order expansion in 1/h of the integral in
Eq. ~76! which we found vanishes identically inh. We are
thus left with a correction factor of simply (12f/2h)5(1
2v/2) up to exponentially small terms. This is precisely t
smallv correction we found in the previous section. The f
behavior to this order for smallf is thus

D;Du01S 11
DG

2

Du01
2 e21/fD S 12

f

2h D . ~93!

This has the subcritical bifurcation we are seeking. Asf
increases from 0,D decreases fromDu01 due to the influ-
ence of the second factor, until the exponential kicks in a
causesD to turn around and start increasing. Thef at which
the turnaround occurs is, for largeh, of order 1/lnh ~trans-
lating to a velocity of order 1/h ln h) which goes to 0 ash
goes to`, but very slowly. Thus at infiniteh there is no
turnaround andD strictly increases withf as we found in
the zeroth-order calculation at the beginning of this secti
The minimum D lies, for large h, an amount of order
1/h(ln h)2 below Du01.

Thus we see that it is the subdominant pieces that
responsible for the increase ofD with v, while the perturba-
tive pieces give rise to the subcritical bifurcation. Analyzi
es

a

e

n

of

l

d

.

re

the subdominant pieces in a little more depth, it is easy to
that for h.A2/2 the leading subdominant piece goes
exp(21/hv). For smallerh, the subdominant piece falls les
rapidly, and has an oscillating component, due to the off-a
branch cut assuming dominance. This oscillation becom
stronger ash is reduced, and gives rise to singularities in t
h→0 limit studied by Slepyan@6#. For these smallh ’s the
solution is also inconsistent@10#, since the first bond break
ing occurs beforet50, in contradiction to the basic assum
tion of the solution ansatz.

VIII. STOKES VISCOSITY

It is worthwhile to contrast the behavior we have seen
Kelvin viscosity with that which obtains Stokes viscosit
where the dissipation is associated with the mass points
not the bonds. The calculation in this case is much simp
since the troublesomeh term is not present. For our pur
poses, it is sufficient to consider ourx-continuum theory, as
the conclusions we obtain carry over to the full lattice mod
The result forũ1 is

ũ15
iD

K1 i01)
m

q2,m~K1 iQ2,m!

Q2,m~K1 iq2,m!
, ~94!

where now theQ’s satisfy the dispersion relation

~12v2!Qm
2 2bvQm1Lm50 ~95!

~and theq’s the parallel form withlm) andb is the Stokes
viscosity. This can be seen by a simple limiting procedu
applied to Eq.~24!, or by replaying the derivation leading u
to Eq. ~41! of @10# with b instead ofh. This form of the
solution can be shown to be equivalent to that obtained
Marder and Gross@8#. This result leads to the solution forD,

D5e)
m

Q2,m

q2,m
. ~96!

We are interested in the large-N limit, which we obtain by
defining the renormalized product

PR5)
m

Q2,m~2lm!

q2,m~2Lm!
, ~97!

since theQ2’s are linear inL for small L. Applying the
EMSF, we find that for largeN,

PR' lim
a→0

AQ2~1!@2L~a!#

Q2~0!@2L~1!#

5@b2v2116~12v2!#1/4A bv

8~12v2!
~98!

so that

D'~2N11!e@b2v2116~12v2!#1/4A bv

8~12v2!
.

~99!
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The key difference between this formula and the parallel
for h is thatD/e is proportional toN, and notN1/2 as before.
The reason for this is that the Stokes viscosity is most ef
tive at damping small wavelengths, and so affects the m
roscopic stress fields. The Kelvin viscosity does not da
out small wavelengths and only acts on short waveleng
Another way to see this is to compute the stress inten
factor, which in the Stokes case is inversely proportiona
Ab. The driving force required to propagate the crack is th
much larger in the Stokes case. In particular, in the Sto
case there is no macroscopic scaling limit, where things
scale with the Griffith driving,DG . For these reasons, w
feel that the Stokes viscosity is not a good model of dissi
tion for studying crack propagation.

The only way to obtain a nice macroscopic limit whereD
scales likeDG is to artificially scaleb with N so that b
5b0 /N. However, this procedure has no physically satis
ing motivation, especially when the Kelvin viscosity mod
suffers none of these defects.

IX. CONCLUDING REMARKS

We close by making a few comments about this work a
prospects for future extensions. First it is important to n
that the present work is limited to a consideration of t
steady-state crack. Thus, aside from general issues of the
of the process zone, the major output of this inquiry is
velocity-driving relation. Here the most striking qualitativ
effect of Kelvin viscosity is near threshold, reducing the e
tent of the backward bifurcation. Significantly above thres
old, the major role of viscosity is to provide a velocity sca
so that the crack velocity becomes inversely proportiona
y

.

h.
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c-
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the viscosity. It is important to understand how viscos
impacts on the stability of the crack. It is clear, as Mard
and Gross have pointed out@8#, that the steady-state crack
unstable in the regime of the backward bifurcation. The m
interesting question is in the higher-velocity regime. He
no systematic studies have been done to examine the ro
viscosity. It is not clear that the piecewise-linear model co
sidered here is altogether appropriate for studies of stabi
as instabilities can be masked by inconsistencies of
steady-state solution. Formally, in our model only the bott
row of springs was allowed to crack, so inconsistency of
high-v solutions is not a problem. If we had allowed all th
springs to crack, then inconsistency would indeed set
above some critical velocity. We look forward to reportin
on work in this direction soon, in both the piecewise-line
and nonlinear models, along with generalization to the pr
lem of mode I cracking.
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